
Chapter 7

Dynamic optimization

Chapter 5 deals essentially with static optimization, that is optimal choice at a single
point of time. Many economic models involve optimization over time. While the same
principles of optimization apply to dynamic models, new considerations arise. On the
one hand, the repetitive nature of dynamic models adds additional structure to the
model which can be exploited in analyzing the solution. On the other hand, many
dynamic models have no finite time horizon or are couched in continuous time, so
that the underlying space is infinite-dimensional. This requires a more sophisticated
theory and additional solution techniques. Dynamic models are increasingly employed
in economic theory and practice, and the student of economics needs to be familiar
with their analysis. This need not be seen as an unrewarding chore - the additional
complexity of dynamic models adds to their interest, and many interesting examples
can be given.
Another factor complicating the study of dynamic optimization is the existence of

three distinct approaches, all of which are used in practice. The classic approach is
based on the calculus of variations, a centuries-old extension of calculus to infinite-
dimensional space. This was generalized under the stimulus of the space race in the
late 1950s to develop optimal control theory, the most common technique for dealing
with models in continuous time. The second principle approach, dynamic program-
ming, was developed at the same time, primarily to deal with optimization in discrete
time. Dynamic programming has already been explored in some detail to illustrate
the material of Chapter 2 (Example 2.32). The third approach to dynamic optimiza-
tion extends the Lagrangean technique of static optimization to dynamic problems.
Consequently, we call this the Lagrangean approach.
A rigorous treatment of dynamic optimization (especially optimal control theory)

is quite difficult. Although many of the necessary prerequisites are contained in earlier
chapters, some essential elements (such as integration) are missing. The goals of this
supplementary chapter are therefore more modest. We aim to take advantage of the
foundation already developed, utilizing as much as possible the optimization theory
of Chapter 5. To this end, we start with the Lagrangean approach in Section 2,
deriving the maximum principle for discrete time problems. We then (Section 3) extend
this by analogy to continuous time problems, stating the continous-time maximum
principle and illustrating its use with several examples. Section 4 takes up the dynamic
programming approach.
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7.1 Introduction

The basic intuition of dynamic optimization can be illustrated with a simple example
of intertemporal allocation. Suppose you embark on a two-day hiking trip with w units
of food. Your problem is to decide how much food to consume on the first day, and
how much to save for the second day. It is conventional to label the first period 0.
Therefore, let c0 denote consumption on the first day and c1 denote consumption on
the second day. The optimization problem is

max
c0,c1

U(c0, c1)

subject to c0 + c1 = w

Clearly, optimality requires that daily consumption be arranged so as to equalize the
marginal utility of consumption on the two days, that is

Dc0U(c0, c1) = Dc1U(c0, c1)

Otherwise, the intertemporal allocation of food could be rearranged so as to increase to-
tal utility. Put differently, optimality requires that consumption in each period be such
that marginal benefit equals marginal cost, where the marginal cost of consumption in
period 0 is the consumption foregone in period 1. This is the fundamental intuition
of dynamic optimization - optimality requires that resources be allocated over time in
such a way that there are no favorable opportunities for intertemporal trade.
Typically, the utility function is assumed to be

Separable U(c0, c1) = u0(c0) + u1(c1) and

Stationary U(c0, c1) = u(c0) + βu(c1)

where β represents the discount rate of future consumption (Example 1.109). Then
the optimality condition is

uI(c0) = βuI(c1)

Assuming that u is concave, we can deduce that

c0 > c1 ⇐⇒ β < 1

Consumption is higher in the first period if future consumption is discounted.
It is straightforward to extend this model in various ways. For example, if it is

possible to borrow and lend at interest rate r, the two-period optimization problem is

max
c0,c1

u(c0) + βu(c1)

subject to c1 = (1 + r)(w − c0)
assuming separability and stationarity. Forming the Lagrangean

L = u(c0) + βu(c1) + λ c1 − (1 + r)(w − c0)
the first-order conditions for optimality are

Dc0L = u
I(c0)− λ(1 + r) = 0

Dc1L = βuI(c1)− λ = 0
Eliminating λ, we conclude that optimality requires that

uI(c0) = βuI(c1)(1 + r) (7.1)
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The left-hand side is the marginal benefit of consumption today. For an optimal alloca-
tion, this must be equal to the marginal cost of consumption today, which is the interest
foregone (1 + r) times the marginal benefit of consumption tomorrow, discounted at
the rate β. Alternatively, the optimality condition can be expressed as

uI(c0)
βuI(c1)

= 1 + r (7.2)

The quantity on the left hand side is the intertemporal marginal rate of substitution.
The quantity on the right can be thought of as the marginal rate of transformation,
the rate at which savings in the first period can be transformed into consumption in
the second period. Assuming u is concave, we can deduce from (7.2) that

c0 > c1 ⇐⇒ (1 + r)β < 1

The balance of consumption between the two periods depends upon the interaction of
the rate of time preference (β) and the interest rate.

Exercise 7.1 Assuming log utility u(c) = log c, show that the optimal allocation of
consumption is

c0 =
w

1 + β
, c1 = (1 + r)

βw

1 + β

Note that optimal consumption in period 0 is independent of the interest rate (Drc0 = 0).

Exercise 7.2 Suppose u(c) =
√
c. Show that Drc0 < 0.

To extend the model to T periods, let ct denote consumption in period t and wt
the remaining wealth at the beginning of period t. Then

w1 = (1 + r)(w0 − c0)
w2 = (1 + r)(w1 − c1)

and so on down to

wT = (1 + r)(wT−1 − cT−1)

where w0 denotes the initial wealth. The optimal pattern of consumption through
times solves the problem

max
ct,wt+1

T−1

t=0

βtu(ct)

subject to wt = (1 + r)(wt−1 − ct−1), t = 1, 2, . . . , T

which is a standard equality constrained optimization problem. Assigning multipliers
(λ1,λ2, . . . ,λT ) to the T constraints, the Lagrangean is

L =
T−1

t=0

βtu(ct)−
T

t=1

λt wt − (1 + r)(wt−1 − ct−1)
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which can be rewritten as

L =
T−1

t=0

βtu(ct)−
T

t=1

λtwt +
T

t=1

λt(1 + r)(wt−1 − ct−1)

=
T−1

t=0

βtu(ct)−
T

t=1

λtwt +
T−1

t=0

λt+1(1 + r)(wt − ct)

= u(c0)− λ1(1 + r)(w0 − c0)

+
T−1

t=1

βtu(ct)−
T−1

t=1

λtwt +
T−1

t=1

λt+1(1 + r)(wt − ct)

+ λTwT

= u(c0)− λ1(1 + r)(w0 − c0)

+
T−1

t=1

βtu(ct)− λtwt + λt+1(1 + r)(wt − ct)

+ λTwT

= u(c0)− λ1(1 + r)(w0 − c0)

+
T−1

t=1

βtu(ct)− λt+1(1 + r)ct + λt+1(1 + r)− λt wt

+ λTwT

The first-order necessary conditions for optimality are (Corollary 5.2.2)

Dc0L = u
I(c0)− λ1(1 + r) = 0

DctL = βtuI(ct)− λt+1(1 + r) = 0, t = 1, 2, . . . , T − 1
DwtL = (1 + r)λt+1 − λt = 0, t = 1, 2, . . . , T − 1
DwTL = λT = 0

Together, these equations imply

βtuI(ct) = λt+1(1 + r) = λt (7.3)

in every period t = 0, 1, . . . , T − 1 and therefore
βt+1uI(ct+1) = λt+1 (7.4)

Substituting (7.4) in (7.3) , we get

βtuI(ct) = βt+1uI(ct+1)(1 + r)

or

uI(ct) = βuI(ct+1)(1 + r), t = 0, 1, . . . , T − 1 (7.5)

which is identical to (7.1), the optimality condition for the two-period problem. An
optimal consumption plan requires that consumption be allocated through time so that
marginal benefit of consumption in period t (uI(ct)) is equal to its marginal cost, which
is the interest foregone (1 + r) times the marginal benefit of consumption tomorrow
discounted at the rate β. Again, we observe that whether consumption increases or
decreases through time depends upon the interaction of the rate of time preference β
and the interest r. Assuming u is concave, (7.5) implies that

ct > ct+1 ⇐⇒ (1 + r)β < 1
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The choice of the level of consumption in each period ct has two effects. First, it
provides contemporaneous utility in period t. In addition, it determines the level of
wealth remaining, wt+1, to provide for consumption in future periods. The Lagrange
multiplier λt associated with the constraint

wt = (1 + r)(wt−1 − ct−1)
measures the shadow price or value of this wealth wt at the beginning of period t.
(7.3) implies that this shadow price is equal to βtuI(ct). Additional wealth in period
t can either be consumed or saved, and its value in these two uses must be equal.
Consequently, its value must be equal to the discounted marginal utility of consumption
in period t. Not that the final first-order condition is λT = 0. Any wealth left over is
assumed to be worthless.

Exercise 7.3 An alternative approach to the multi-period optimal savings problem utilizes
a single intertemporal budget constraint

(1 + r)T c0 + · · ·+ (1 + r)2cT−2 + (1 + r)cT−1 = (1 + r)Tw0 (7.6)

Derive (7.6) and solve the problem of maximizing discounted total utility subject

max
ct

T−1

t=0

βtu(ct)

subject to this constraint.

The general finite horizon dynamic optimization problem can be depicted as

s0
a0−→
↓

f0(a0, s0)

s1
a1−→
↓

f1(a1, s1)

s2
a2−→
↓

f2(a2, s2)

. . .
aT−1−→
↓

fT−1(aT−1, sT−1)

st
↓

v(st)

Starting from an initial state s0, the decision maker chooses some action a0 ∈ A0 in the
first period. This generates a contemporaneous return or benefit f0(a0, s0) and leads
to a new state s1, the transition to which is determined by some function g

s1 = g0(a0, s0)

In the second period, the decision maker choses another action a1 ∈ A1, generating
a contemporaneous return f(a1, s1) and leading to a new state s2 to begin the third
period, and so on for T periods. In each period t, the transition to the new state is
determined by the transition equation

st+1 = gt(at, st)

The resulting sequence of choices a0,a1, . . . ,aT−1 and implied transitions leaves a ter-
minal state sT , the value of which is v(sT ).
Assuming separability, the objective of the decision maker is to choose that sequence

of actions a0,a1, . . . ,aT−1 which maximizes the discounted sum of the contemporane-
ous returns ft(at, st) plus the value of the terminal state v(sT ). Therefore, the general
dynamic optimization problem is

max
at∈At

T−1

t=0

βtft(at, st) + βT v(sT ) (7.7)

subject to st+1 = gt(at, st), t = 0, . . . , T − 1
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given the initial state s0.
The variables in this optimization problem are of two types. The action at is known

as the control variable, since it is immediately under the control of the decision-maker,
and any value at ∈ At may be chosen. In contrast, st, known as the state variable,
is determined only indirectly through the transition equation. In general, additional
constraints may be imposed on the state variable. In particular, in economic models,
negative values may be infeasible. As the bold face indicates, both the control and
state variables can be vectors. However, to simplify the notation, we shall assume a
single state variable (st ∈ _) in the rest of the chapter.

7.2 The Lagrangean approach

Stripped of its special interpretation, (7.7) is a constrained optimization problem of
the type analyzed in Chapter 5, which can be solved using the Lagrangean method. In
forming the Lagrangean, it is useful to multiply each constraint (transition equation)
by βt+1, giving the equivalent problem

max
at∈At

T−1

t=0

βtft(at, st) + βT v(sT )

subject to βt+1 st+1 − gt(at, st) = 0, t = 0, . . . , T − 1
Assigning multipliers λ1,λ2, . . . ,λT to the T constraints (transition equations), the
Lagrangean is

L =
T−1

t=0

βtft(at, st) + βT v(sT )−
T−1

t=0

βt+1λt+1 st+1 − gt(at, st)

To facilitate derivation of the first-order conditions, it is convenient to rewrite the
Lagrangean, first rearranging terms

L =
T−1

t=0

βtft(at, st) +
T−1

t=0

βt+1λt+1gt(at, st)−
T−1

t=0

βt+1λt+1st+1 + βT v(sT )

=
T−1

t=0

βtft(at, st) +
T−1

t=0

βt+1λt+1gt(at, st)−
T

t=1

βtλtst + βT v(sT )

and then separating out the first and last periods

L = f0(a0, s0) + βλ1g0(a0, s0)

+
T−1

t=1

βt ft(at, st) + βλt+1gt(at, st)− λtst (7.8)

− βTλT sT + βT v(sT )

7.2.1 Basic necessary and sufficient conditions

First, we assume that the set of feasible controls At is open. The gradients of the
constraints are linearly independent (since each period’s at appears in only one tran-
sition equation). Therefore, a necessary condition for optimality is stationarity of the
Lagrangean (Theorem 5.2), which implies the following conditions. In each period
t = 0, 1, . . . , T − 1, at must be chosen such that

DatL = βt Datft(at, st) + βλt+1Datgt(at, st) = 0
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Similarly, in periods t = 1, 2, . . . , T − 1, the resulting st must satisfy
DstL = βt Dstft(at, st) + βλt+1Dstgt(at, st)− λt = 0

while the terminal state sT must satisfy

DsTL = βT − λT + vI(sT ) = 0
The sequence of actions a0,a1, . . . ,aT−1 and states s1, s2, . . . , sT must also satisfy the
transition equations

st+1 = gt(at, st), t = 0, . . . , T − 1
These necessary conditions can be rewritten as

Datft(at, st) + βλt+1Datgt(at, st) = 0, t = 0, 1, . . . , T − 1
Dstft(at, st) + βλt+1Dstgt(at, st) = λt, t = 1, 2, . . . , T − 1 (7.9)

st+1 = gt(at, st), t = 0, 1, . . . , T − 1
λT = v

I(sT ) (7.10)

Stationarity of the Lagrangean is also sufficient to characterize a global optimum if
the Lagrangean is concave in at and st (Exercise 5.20). If v is increasing, (7.10) implies
that λT ≥ 0. If in addition, ft and gt are increasing in st, (7.9) ensure that λt ≥ 0 for
every t, in which case the Lagrangean will be concave provided that ft, gt and v are
all concave (Exercise 3.131). We summarize this result in the following theorem.

Theorem 7.1 (Finite horizon dynamic optimization) In the finite horizon dy-
namic optimization problem

max
at∈At

T−1

t=0

βtft(at, st) + βT v(sT )

subject to st+1 = gt(at, st), t = 0, . . . , T − 1
given the initial state s0, suppose that

• At open for every t
• ft, gt are concave and increasing in st
• v is concave and increasing.

Then a0,a1, . . . ,aT is an optimal solution if and only if there exist unique multipliers
(λ1,λ2, . . . ,λT ) such that

Datft(at, st) + βλt+1Datgt(at, st) = 0, t = 0, 1, . . . , T − 1 (7.11)

Dstft(at, st) + βλt+1Dstgt(at, st) = λt, t = 1, 2, . . . , T − 1 (7.12)

st+1 = gt(at, st), t = 0, 1, . . . , T − 1 (7.13)

λT = v
I(sT ) (7.14)

To interpret these conditions, observe that a marginal change in at in period t has
two effects. It changes the instantaneous return in period t byDatft(at, st). In addition,
it has future consequences, changing the state in the next period st+1 by Datgt(at, st),
the value of which is measured by the Lagrange multiplier λt+1. Discounting to the
current period, Datf(at, st)+βλt+1Datg(at, st) measures the total impact of a marginal
change in at. The first necessary condition (7.11) requires that, in every period, at
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must be chosen optimally, taking account of both present and future consequences of
a marginal change in at.
The second necessary condition (7.12) governs the evolution of λt, the shadow price

of st. A marginal change st has two effects. It changes the instantaneous return
in period t by Dstft(at, st). In addition, it alters the attainable state in the next
period st+1 by Dstgt(at, st), the value of which is λt+1Datgt(at, st). Discounting to the
current period, the total impact of marginal change in st is given by Dstft(at, st) +
βλt+1Dstgt(at, st), which is precisely what is meant by the shadow price λt of st. The
second necessary condition (7.12) requires that the shadow price in each period λt
correctly measures the present and future consequences of a marginal change in st.
(7.13) is just the transition equation, while the final condition (7.14) states that the
resulting shadow price of sT is must be equal to its marginal value v

I(sT ).
The necessary and sufficient conditions (7.11) to (7.14) constitute a simultaneous

system of 3T equations in 3T unknowns, which in principle can be solved for the
optimal solution (Example 7.1). In general, though, the split boundary conditions (s0
given, λT = v

I(sT )) precludes a simple recursive solution. This does not usually pose
a problem in economic models, where we are typically interested in characterising the
optimal solution rather than solving particular problems (Examples 7.2 and 7.3).

Example 7.1 (Closing the mine) Suppose you own a mine. Your mining licence will
expire in three years and will not be renewed. There are known to be 128 tons of ore
remaining in the mine. The price is fixed at $1 a ton. The cost of extraction is q2t /xt where
qt is the rate of extraction and xt is the stock of ore. Ignoring discounting for simplicity
(β = 1), the optimal production plan solves

max
qt,xt

3

t=0

1− qt
xt

qt

subject to xt+1 = xt − qt, t = 0, 1, 2

The Lagrangean is

L =
3

t=0

1− qt
xt

qt − λt+1(xt+1 − xt + qt)

The first-order conditions are

DqtL = 1− 2
qt
xt
− λt+1 = 0, t = 0, 1, 2

DxtL =
qt
xt

2

− λt + λt+1 = 0, t = 1, 2

xt+1 = xt − qt, t = 0, 1, 2

λ3 = 0

Let zt = 2qt/xt (marginal cost). Substituting, the first-order conditions become

zt + λt+1 = 1, t = 0, 1, 2

λt = λt+1 +
1

4
z2t , t = 1, 2

λ3 = 0

The left-hand side of the first equation is the extra cost of selling an additional unit in
period t, comprising the marginal cost of extraction zt plus the opportunity cost of having
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one less unit to sell in the subsequent period, which is measured by the shadow price of
the stock in period t+1. Optimality requires that this cost be equal to the price of selling
an additional unit, which is 1.
The first-order conditions provide a system of difference equations, which in this case

can be solved recursively. The optimal plan is

t xt qt zt λt+1
0 128 39 0.609375 0.390625
1 89 33.375 0.75 0.25
2 55.625 27.8125 1 0

Example 7.2 (Optimal economic growth) A finite horizon verion of the optimal
economic growth model (Example 2.33)

max
ct

T−1

t=0

βtu(ct) + βT v(kT )

subject to kt+1 = F (kt)− ct
where c is consumption, k is capital, F (kt) is the total supply of goods available at the
end of period t, comprising current output plus undepreciated capital, and v(kT ) is the
value of the remaining capital at the end of the planning horizon. Setting at = ct, st = kt,
f(at, st) = u(ct), g(at, st) = F (kt) − ct. It is economically reasonable to assume that
u is concave, and that F and v are concave and increasing, in which case the optimality
conditions (7.11) to (7.14) are both necessary and sufficient. That is, an optimal plan
satisfies the equations

uI(ct) = βλt+1 t = 0, 1, . . . , T − 1 (7.15)

λt = βλt+1F
I(kt) t = 1, 2, . . . , T − 1 (7.16)

kt+1 = F (kt)− ct t = 0, 1, . . . , T − 1 (7.17)

λT = v
I(kT ) (7.18)

To interpret these conditions, observe that, in any period, output can be either con-
sumed or saved, in accordance with the transition equation (7.17). The marginal benefit
of additional consumption in period t is uI(ct). The future consequence of additional con-
sumption is a reduction in capital available for the subsequent period, the value of which,
discounted to period t, is βλt+1. This is the marginal cost of additional consumption in
period t. The first necessary condition (7.15) for an optimal plan requires that consumption
in each period be chosen so that the marginal benefit of additional consumption is equal
to its marginal cost.
Now focus on period t+ 1, when (7.15) and (7.16) require

uI(ct+1) = βλt+2 and λt+1 = βλt+2F
I(kt+1) (7.19)

The impact of additional capital in period t + 1 is increased production F I(kt+1). This
additional production could be saved for the subsequent period, in which case it would
be worth βλt+2F

I(kt+1). Alternatively, the additional production could be consumed, in
which case it would be worth uI(ct+1)F I(kt+1). Together, equations (7.19) imply that

βλt+1 = βuI(ct+1)F I(kt+1)

But (7.15) implies that this is equal to the the marginal benefit of consumption in period
t, that is

uI(ct) = βuI(ct+1)F I(kt+1) (7.20)
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which is known as the Euler equation. The left-hand side is the marginal benefit of con-
sumption in period t, while the right-hand side is the marginal cost, where the marginal
cost is measured by marginal utility of potential consumption foregone (uI(ct+1)F I(kt+1)
discounted one period.
The Euler equation (7.20) can be rearranged to give

uI(ct)
βuI(ct+1)

= F I(kt+1)

The left-hand side of this equation is the intertemporal marginal rate of substitution in
consumption, while the right-hand side is the marginal rate of transformation in production,
the rate of which additional capital can be transformed into additional output.
Subtracting uI(ct+1) from both sides, the Euler equation (7.20) can be expressed as

uI(ct)− uI(ct+1) = (βF I(kt+1)− 1)uI(ct+1)
Assuming that c is concave, this implies

ct+1 ct ⇐⇒ βF I(kt+1) 1

Whether consumption is increasing or decreasing under the optimal plan depends on the
balance between technology and the rate of time preference.
The Euler equation (7.20) determines relative consumption between successive periods.

The actual level of the optimal consumption path c0, c1, . . . , cT−1 is determined by the
initial capital k0 and by the requirement (7.18) that the shadow price of capital in the final
period λT be equal to the marginal value of the terminal stock v

I(kT )

Exercise 7.4 (Optimal savings) Derive (7.5) by applying Theorem 7.1 to the optimal
savings problem

max
T−1

t=0

βtu(ct)

subject to wt+1 = (1 + r)(wt − ct)
analysed in the previous section.

Remark 7.1 (Form of the Lagrangean) In forming the Lagrangean (7.8), we first
multiplied each transition equation by βt+1. If we do not do this, the Lagrangean is

L = f0(a0, s0) + µ1g0(a0, s0)

+
T−1

t=1

βtft(at, st) + µt+1gt(at, st)− µtst

− µT sT + βT v(sT )

and the necessary conditions for optimality become

βtDatft(at, st) + µt+1Datgt(at, st) = 0, t = 0, 1, . . . , T − 1 (7.21)

βtDstft(at, st) + µt+1Dstgt(at, st) = µt, t = 1, 2, . . . , T − 1 (7.22)

st+1 = gt(at, st), t = 0, 1, . . . , T − 1 (7.23)

µT = βT vI(sT ) (7.24)

These are precisely equivalent to (7.11) to (7.14), except for the interpretation of µ (see
Remark 5.3). The Lagrange multiplier µt in (7.21) to (7.24) measures the value of the
state variable discounted to the first period (the initial value multiplier). In contrast, λt
in (7.11) to (7.14), which measures the value of st in period t, is called the current value
multiplier.



CHAPTER 7. DYNAMIC OPTIMIZATION 11

Exercise 7.5 Apply the necessary conditions (7.21) to (7.24) to the optimal growth model
(Example 7.2), and show that they imply the same optimal plan.

7.2.2 Transversality conditions

The terminal condition (7.14) determining the value of the Lagrange multiplier at the
end of the period

λT = v
I(ST )

is known as a transversality condition. This specific transversality condition is the one
appropriate to problems in which terminal value of the state variable (sT ) is free, as
in (7.7) and examples 7.1 and 7.2. Note in particular, where v(sT , T ) = 0, optimality
requires that λT = 0.
In other problems, the terminal value of the state variable (sT ) may be specified, or

at least constrained to lie in a certain set. In yet other problems (for example optimal
search), the terminal time T itself may be endogenous, to be determined as part of
the solution. In each case, the transversality condition must be modified appropriately.
The following table summarizes the transversality conditions for some common cases.

Table 7.1: Transversality conditions
Terminal condition Transversality condition

sT fixed None
sT free λT = VsT
sT ≥ s̄ λT ≥ 0 and λT (sT − s̄) = 0

Exercise 7.6 Consider the finite horizon dynamic optimization problem (7.7) with a ter-
minal constraint

max
at∈At

T−1

t=0

βtft(at, st)

subject to st+1 = gt(at, st), t = 0, . . . , T − 1
sT ≥ s̄

given the initial state s0. Assume for every t = 0, . . . , T − 1
• At is open
• ft, gt are concave and increasing in st

Show that a0,a1, . . . ,aT is an optimal solution if and only if there exists unique multipliers
λ1,λ2, . . . ,λT satisfying (7.11) to (7.12) together with

λT ≥ 0 and λT (sT − s̄) = 0

7.2.3 Nonnegative variables

Both control and state variable in economic models are usually required to be non-
negative, in which case the necessary conditions should be modified as detailed in the
following corollary.
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Corollary 7.1.1 (Nonnegative variables) In the finite horizon dynamic optimiza-
tion problem

max
at≥0

T−1

t=0

βtft(at, st) + βT v(sT )

subject to st+1 = gt(at, st) ≥ 0, t = 0, . . . , T − 1
given the initial state s0, suppose that

• ft, gt are concave in a and s and increasing in s
• v is concave and increasing.

Then a0,a1, . . . ,aT is an optimal solution if and only if there exist unique multipliers
(λ1,λ2, . . . ,λT ) such that

Datft(at, st) + βλt+1Datgt(at, st) � 0, at ≥ 0,
(Datft(at, st) + βλt+1Datgt(at, st))at = 0, t = 0, 1, . . . , T − 1

Dstft(at, st) + βλt+1Dstgt(at, st) � λt, st ≥ 0
(Dstft(at, st) + βλt+1Dstgt(at, st)− λt)st = 0, t = 1, 2, . . . , T − 1

st+1 = gt(at, st), t = 0, 1, . . . , T − 1
λT ≥ vI(sT ), sT ≥ 0, λT sT = 0

Exercise 7.7 Prove corollary 7.1.1.

Example 7.3 (Exhaustible resources) Consider a monopolist extracting an exhaustible
resource, such as a mineral deposit. Let xt denote the size of the resource at the beginning
of period t, and let qt quantity extracted during in period t. Then, the quantity remaining
at the beginning of period t + 1 is xt − qt. That is, the stock evolves according to the
simple transition equation

xt+1 = xt − qt
If demand is determined by the known (inverse) demand function pt(qt) and extraction
incurs a constant marginal cost of c per unit, the net profit in each period is (pt(qt)− c)qt.
The monopolist’s objective is to maximize total discounted profit

Π =
T−1

t=0

βt pt(qt)− c qt

Note that this objective function is separable but not stationary, since demand can vary
through time. Since negative quantities are impossible, both qt and xt must be nonnegative.
Summarizing, the monopolist’s optimization problem is

max
qt≥0

T−1

t=0

βt pt(qt)− c qt

xt+1 = xt − qt ≥ 0
given an initial stock x0.
Setting at = qt, st = xt, ft(at, st) = (pt(qt)−c)qt, gt(at, st) = xt−qt and v(sT ) = 0,

and letting mt(qt) = pt(qt)+p
I
t(qt)qt denote marginal revenue in period t, we observe that

Daft(at, st) = pt(qt) + p
I
t(qt)qt − c = mt(qt)− c
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Applying Corollary 7.1.1, the necessary conditions for optimality are

mt(qt)− c � βλt+1 qt ≥ 0 mt(qt)− c − βλt+1 qt = 0 (7.25)

βλt+1 � λt xt ≥ 0 (βλt+1 − λt)xt = 0 (7.26)

λT ≥ 0 xT ≥ 0 λTxT = 0

where (7.25) holds for all periods t = 0, 1, . . . , T − 1 and (7.26) holds for periods t =
1, 2, . . . , T−1. Provided marginal revenue is decreasing, these conditions are also sufficient.
In interpreting these conditions, we observe that there are two cases.

Case 1 In the first case, the initial quantity is so high that it is not worthwhile extracting
all the resource in the available time leaving xT > 0 which implies that λT = 0.
Nonnegativity (qt ≥ 0) implies that xt > 0 for all t, which by (7.26) implies that
λ0 = λ1 = · · · = λT = 0. Then (7.25) implies that mt(qt) � c in every period,
with mt(qt) = c if qt > 0. That is, the monopolist should produce where marginal
revenue equals marginal cost, provided the marginal revenue of the first unit exceeds
its marginal cost. In effect, there is no resource constraint, and the dynamic problem
reduces to a sequence of standard single period monopoly problems.

Case 2 In the more interesting case, the resource is scarce and it is worthwhile extracting
the entire stock (xT = 0). For simplicity, assume that output is positive (qt > 0) in
every period. (The general case is analysed in Exercise 7.8). Then (7.25) implies

mt(qt) = c+ βλt+1 for every t = 0, 1, . . . , T − 1

Again, optimality requires producing where marginal revenue equals marginal cost,
but in this case the marginal cost of production in period t includes both the marginal
cost of extraction c plus the opportunity cost of the reduction in stock available for
subsequent period, which is measured by the shadow price of the remaining resource
λt+1 discounted to the current period.

In particular, in the subsequent period t+ 1, we have

mt+1(qt+1)− c = βλt+2

But (7.26) implies (since xt+1 > 0) that β
2λt+2 = βλt+1 so that

β(mt+1(qt+1)− c) = β2λt+2 = βλt+1 = mt(qt)− c

So that an optimal extraction plan is characterized by

mt(qt)− c = β mt+1(qt+1)− c) (7.27)

The left-hand side is the net profit from selling an additional unit in the current
period. The right-hand side is the opportunity cost of selling an additional unit
in the current period, which is foregone opportunity to sell an additional unit in the
subsequent period. Extraction should be organized through time so that no profitable
opportunity to reallocate production between adjacent periods remains. Note that
this is precisely analogous to the condition for the optimal allocation of consumption
we obtained in section 1.

Exercise 7.8 Extend the analysis of Case 2 in example 7.3 to allow for the possibility
that it is optimal to extract nothing (qt = 0) in some periods.
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Remark 7.2 (Hotelling’s rule) Hotelling (1931) showed that, in a competitive indus-
try, the price of an exhaustible resource must change so that net rents increase at the rate
of interest r, that is

pt+1 − c
pt − c = 1 + r for every t

a result known as Hotelling’s rule. Otherwise, there would be opportunity for profitable
arbitrage. For a profit-maximizing monopolist (in the absence of uncertainty), the discount
rate is β = 1/(1 + r) and (7.27) implies

mt+1 − c
mt − c =

1

β
= 1 + r for every t (7.28)

In other words, the monopolist should arrange production so that the marginal profit rises at
the rate of interest, since otherwise it would be profitable to rearrange production through
time.

Exercise 7.9 (Conservation and market structure) Will a monopoly extract an
exhaustible resource at a faster or slower rate than a competitive industry? Assume zero
extraction cost.

[Hint: Compare the rate of price change implied by (7.28) with Hotelling’s rule. Note
that marginal revenue can be rewritten as

mt(qt) = pt(qt) + p
I(qt)qt = pt(1 + pI(qt)

qt
pt
) = pt(1 +

1

6t
)

where 6t is the elasticity of demand in period t. ]

7.2.4 The Maximum principle

Some economy of notation can be made by defining the Hamiltonian by

Ht(at, st,λt+1) = ft(at, st) + βλt+1gt(at, st) (7.29)

Then the Lagrangean (7.8) becomes

L = H0(a0, s0,λ1) +
T−1

t=1

βt Ht(at, st,λt+1)− λtst − βTλT sT + βT v(sT )

Assuming At is open, stationarity requires

DatL = βtDatHt(at, st,λt+1) = 0, t = 0, 1, . . . , T − 1
DstL = βt DsHt(at, st,λt+1)− λt = 0, t = 1, 2, . . . , T − 1
DSTL = βT − λT + V I(ST ) = 0

These necessary conditions can be rewritten as

DatHt(at, st,λt+1) = 0, t = 0, 1, . . . , T − 1
DsHt(at, st,λt+1) = λt, t = 1, 2, . . . , T − 1
λT = v

I(ST ) = 0

Of course, the optimal plan must also satisfy the transition equation

st = gt(at, st), t = 0, 1, . . . , T − 1
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Under the same assumptions as theorem 7.1, stationarity is also sufficient for a global
optimum (Exercise 5.20).
It is not merely that the Hamiltonian enables economy of notation. Its principal

merit lies in its economic interpretation. The Hamiltonian

Ht(at, st,λt+1) = f(at, st) + βλt+1g(at, st)

measures the total return in period t. The choice of at in period t affects the total return
in two ways. The first term f(at, st) reflects the direct effect of choosing at in period
t. The second term λt+1g(at, st) measures change in the value of state variable, the
ability to provide returns in the future. The Hamiltonian augments the single period
return f(at, st) to account for the future consequences of current decisions, aggregating
the direct and indirect effects of the choice of at in period t.
The first-order condition

DatHt(at, st,λt+1) = 0, t = 0, 1, . . . , T − 1
characterizes an interior maximum of the Hamiltonian along the optimal path. The
principal applies more generally. For example, if the actions are constrained to some
set At, the previous equation should be replaced by

max
at∈A

Ht(at, st,λt+1), t = 0, 1, . . . , T − 1

The Maximum Principal prescribes that, along the optimal path, at should be chosen
in such a way as to maximize the total benefits in each period. In a limited sense,
the Maximum principle transforms a dynamic optimization problem into a sequence of
static optimization problems. These static problems are related by two intertemporal
equations - the transition equation and the corresponding equation determining the
evolution of the shadow price λt.

Corollary 7.1.2 (Maximum principle) In the finite horizon dynamic optimization
problem

max
at∈At

T−1

t=0

βtft(at, st) + βT v(sT )

subject to st+1 = gt(at, st), t = 0, . . . , T − 1
given the initial state s0, suppose that

• ft, gt are concave and increasing in st
• v is concave and increasing.

Then a0,a1, . . . ,aT is an optimal solution if and only if

max
at∈A

Ht(at, st,λt+1), t = 0, 1, . . . , T − 1 (7.30)

DsHt(at, st,λt+1) = λt, t = 1, 2, . . . , T − 1
st = gt(at, st), t = 0, 1, . . . , T − 1 (7.31)

λT = v
I(ST )

where Ht(at, st,λt+1) = ft(at, st) + βλt+1gt(at, st) is the Hamiltonian.

Proof. The proof for At open is given above. The general case is given in Cannon,
Cullum and Polak (1970). 2
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Remark 7.3 Observing that

gt(at, st) = Dβλt+1H(at, st,λt+1)

the transition equation can be written as

st+1 = Dβλt+1H(at, st,λt+1)

Suppressing function arguments for clarity, the necessary and sufficient conditions can be
written very compactly as

max
a
H, t = 0, 1, . . . , T − 1

st+1 = Dβλt+1H, t = 0, 1, . . . , T − 1
λt = DsH, t = 1, 2, . . . , T − 1
λT = v

I

Example 7.4 (Optimal economic growth) In the optimal growth problem (Example
7.2, the Hamiltonian is

H(ct, kt,λt+1) = u(ct) + βλt+1(F (kt)− ct)
which yields immediately the optimality conditions

DcH = uI(ct)− βλt+1 = 0, t = 0, 1, . . . , T − 1
kt+1 = Dβλt+1H = F (kt)− ct, t = 0, 1, . . . , T − 1
λt = DkH = βλt+1F

I(kt), t = 1, 2, . . . , T − 1
λT = v

I(kT )

Remark 7.4 (Form of the Hamiltonian) The Hamiltonian defined in equation (7.29)
is known as the current value Hamiltonian since it measures the total return in period t.
Some authors use the initial value Hamiltonian

Ht(at, st, µt+1) = βtft(at, st) + µt+1gt(at, st) (7.32)

where µt+1 is the present value multiplier (Remark 7.1). This measures the total return in
period t discounted to the initial period, and yields the equivalent optimality conditions

max
a
H, t = 0, 1, . . . , T − 1

st+1 = Dµt+1H, t = 0, 1, . . . , T − 1
µt = DsH, t = 1, 2, . . . , T − 1
µT = v

I

7.2.5 Infinite horizon problems

Many problems have no fixed terminal date and are more appropriately or conveniently
modeled as infinite horizon problems, so that (7.7) becomes

max
at∈At

∞

t=0

βtft(at, st) (7.33)

subject to st+1 = gt(at, st), t = 0, 1, . . .

given s0. To ensure that the total discounted return is finite, we assume that ft is
bounded for every t and β < 1.
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An optimal solution to (7.33) must also be optimal over any finite period, provided
the future consequences are correctly taken into account. That is, (7.33) is equivalent
to

max
at∈At

T−1

t=0

βtft(at, st) + βT vT (sT )

subject to st+1 = gt(at, st), t = 0, 1, . . . , T − 1
where

vT (sT ) = max
at∈At

∞

t=T

βt−T ft(at, st) subject to st+1 = gt(at, st), t = T, T + 1, . . .

This is an instance of the principle of optimality to be discussed in Section 4. It
follows that the infinite horizon problem (7.33) must satisfy the same intertemporaral
optimality conditions as its finite horizon cousin, namely

Datft(at, st) + βλt+1Datgt(at, st) = 0, t = 0, 1, . . .

Dstft(at, st) + βλt+1Dstgt(at, st) = λt, t = 1, 2, . . .

st+1 = gt(at, st), t = 0, 1, . . .

Example 7.5 (Investment in the competitive firm) Consider a competitive firm
producing a single output with two inputs, “capital” (k) and “labor” (l) according to
the production function f(k, l). In the standard static theory of the firm, the necessary
conditions to maximize the firm’s profit (Example 5.11)

maxΠ = pf(k, l)− wl − rk
are

pfk = r and pfl = w

where p is the price of output, r the price of capital services, w the price of labor (wage
rate), and fk and fl are the marginal products of capital and labour respectively.
Suppose that one of the inputs, “capital” (k), is long lived. Then we need to consider

multiple periods, allowing for discounting and depreciation. Assume that capital depreciates
at rate δ so that

kt+1 = (1− δ)kt + It
where kt is the stock of capital and It the firm’s investment in period t. The firm’s net
revenue in period t is

πt = ptf(kt, lt)− wtlt − qtIt
where q is the price of new capital. Assuming that the firm’s objective is maximise the
present value of its profits and there is no final period, its optimization problem is

max
∞

t=0

βtπt =
∞

t=0

βt ptf(kt, lt)− wtlt − qIt

subject to

k0 = k̄0, kt+1 = (1− δ)kt + It, t = 0, 1, 2, . . .
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where k̄0 is the initial capital and β is the discount factor. Setting at = It, st = kt,
f(at, st) = ptf(kt, lt) − wtlt − qIt , g(at, st) = (1 − δ)kt + It the necessary conditions
for optimal production and investment include

−q + βλt+1 = 0 (7.34)

ptfl(kt, lt)− wt = 0 (7.35)

ptfk(kt, lt) + βλt+1(1− δ) = λt

kt+1 = (1− δ)kt + It
where fk and fl are the marginal products of capital and labour respectively. Equation
(7.35) requires

ptfl(kt, lt) = wt

in every period, the standard marginal productivity condition for labour. Since there are no
restrictions on the employment of labour, the firm employs the optimal quantity of labour
(given its capital stock) in each period.
Equation (7.34) implies

βλt+1 = q

and therefore λ is constant

λt = λt+1 =
q

β

Substituting into (7.35) yields

ptfk(kt, lt) + (1− δ)q = q

β

or

ptfk(kt, lt) =
q

β
− (1− δ)q

Letting β = 1/(1 + r), we get

ptfk(kt, lt) = (1 + r)q − (1− δ)q = (r + δ)q

The right hand side (r + δ)q is known as the user cost of capital, the sum of the interest
cost and the depreciation. This condition requires that investment be determined so the
marginal benefit of capital pfk be equal to its user cost in each period. These necessary
conditions are also sufficient provided that the production function f is concave.

Exercise 7.10 Modify the model in the previous example to allow for the possibility that
investment is irreversible so that It ≥ 0 in every period. Derive and interpret the necessary
conditions for an optimal policy.

The infinite horizon precludes using backward induction to solve for the optimal
solution. Where the problem is stationary (f , g independent of t), it may be reasonable
to assume that the optimal solution converges to a steady state in which variables are
constant, that is

at = a
∗ st = s

∗ λt = λ∗ for every t ≥ T
satisfying the necessary conditions

Da∗f(a
∗, s∗) + βλ∗Da∗g(a∗, s∗) = 0

Ds∗f(a
∗, s∗) + βλ∗Ds∗g(a∗, s∗) = λ∗

s∗ = g(a∗, s∗)

These conditions can then be used to analyze the properties of the steady state.
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Example 7.6 (Golden rule) In the optimal economic growth model (Example 2.33),
a steady state requires

λ∗ = βλ∗f I(k∗)

That is, the steady state capital stock is determined by

βf I(k∗) = 1

Under the golden rule of growth, capital stock is set a level which maximizes steady
state consumption. In a steady state (c∗, k∗), consumption is

c∗ = f(k∗)− k∗

which is maximized where

f I(k∗) = 1

To achieve this target level of capital requires sacrificing current consumption. The optimal
growth policy discounts the future, and sets a more modest target

βf I(k∗) = 1

which promises a lower level of steady state consumption. In other words, an optimal policy
trades off potential future consumption against higher current consumption. This is known
as the modified golden rule.

Exercise 7.11 (The Alcoa case) In the celebrated Alcoa Case (1945), Judge Learned
Hand ruled that Alcoa constituted an illegal monopoly since it controlled 90% of domestic
aluminium production. Several economists criticised this decision, arguing that the compet-
itive aluminium recycling industry would restrain Alcoa from abusing its dominant position.
To adequately examine this issue requires an intertemporal model.

1. Assume that aluminium lasts only one period. At the end of the period, it is either
recycled or scrapped. Let qt−1 denote the stock of aluminium available in period
t− 1 and let xt denote the fraction which is recycled for use in period t. Then

qt = yt − xtqt−1
where yt is the production of new aluminium in period t. Let C(xt) denote the cost
of recycling. Assume that C is a strictly convex, increasing function with C(0) = 0
and C(1) =∞. Assuming that recycling is competitive, show that the fraction x of
output recycled is an increasing function of the price of aluminium p, that is

xt = x(pt), xI > 0

2. Suppose that new aluminium is produced by a monopolist at constant marginal cost c.
Assume that there is a known inverse demand function pt = P (qt). The monoplist’s
objective is maximize the present discounted value of profits

max
∞

t=0

βt(P (qt)− c)yt

where qt = yt − xtqt−1
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where β is the discount factor. Show that in a steady state, the optimal policy
satisfies

(p− c)(1− βx− xIP Iq) = −(1− x)P Iq
You can assume that the second-order conditions are satisfied. Note that x is a
function of p.

[Hint: This is a case in which it may be easier to proceed from first principles rather
than try and fit the model into the standard formulation. ]

3. Deduce that p > c. That is, recycling does not eliminate the monopolist’s market
power. In fact p→ c if and only if x→ 1.

4. Show however that recycling does limit the monopolist’s market power and therefore
increase welfare.

7.3 Continuous Time

So far, we have divided time into discrete intervals, such as days, months, or years.
While this is appropriate for many economic models, it is not suitable for most physical
problems. Problems involving motion in space, such as the guiding a rocket to the
moon, need to be expressed in continuous time. Consequently, dynamic optimization
has been most fully developed in this framework, where additional tools of analysis can
be exploited. For this reason, it is often useful to adopt the continuous time framework
in economic models.

Remark 7.5 (Discounting in continuous time) The discount rate β in the discrete
time model (7.7) can be thought of as the present value of $1 invested at the interest rate
r. That is, to produce a future return of $1 when the interest rate is r

β =
1

1 + r

needs to be invested, since this amount will accrue to

β(1 + r) = 1

after one period. However, suppose interest is accumulated n times during period, with
r/n earned each sub-period and the balance compounded. Then, the present value is

β =
1

(1 + r/n)n

since this amount will accrue to

β 1 +
r

n

n

= 1

over a full period. Since

lim
n→∞ 1 +

r

n

n

= er

the present value of $1 with continuous compounding over one period is

β = e−r

Similarly, the present value of $1 with continuous compounding over t periods is

βt = e−rt
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The continuous time analog of the finite horizon dynamic problem (7.7) is

max
a(t)

T

0

e−rtf(a(t), s(t), t)dt+ e−rT v(s(T )) (7.36)

subject to ṡ = g(a(t), s(t), t)

given s(0) = s0, with an integral replacing the sum in the objective function and a
differential equation replacing the difference equation in the transition equation.
The Lagrange multipliers (λ1,λ2, . . . ,λT ) in (7.8) define a functional on the set

1, 2, . . . , T . They must be replaced in the continuous time framework by a functional
λ(t) on [0, T ]. As in Section 7.2, it is convenient to multiply each constraint by e−rt

when forming the Lagrangean, to give

L =
T

0

e−rtf(a(t), s(t), t)dt+ e−rT v(s(T ))−
T

0

e−rtλ(t) ṡ− g(a(t), s(t), t) dt

Rearranging terms

L =
T

0

e−rt f(a(t), s(t), t) + λ(t)g(a(t), s(t), t) dt−
T

0

e−rtλ(t)ṡdt+ e−rT v(s(T ))

=
T

0

e−rtH(a(t), s(t),λ(t), t)dt−
T

0

e−rtλ(t)ṡdt+ e−rT v(s(T )) (7.37)

where H is the Hamiltonian

H(a(t), s(t),λ(t), t) = f(a(t), s(t), t) + λ(t)g(a(t), s(t), t)

Assuming for the moment that λ(t) is differentiable, we can integrate the second term
in (7.36) by parts to give

T

0

e−rtλ(t)ṡdt = e−rTλ(T )s(T )− λ(0)s(0)−
T

0

e−rts(t)λ̇dt+ r
T

0

e−rts(t)λ(t)dt

so that the Lagrangean can be written as

L =
T

0

e−rt H(a(t), s(t),λ(t), t) + s(t)λ̇− rs(t)λ(t) dt

+ e−rT v(s(T ))− e−rTλ(T )s(T ) + λ(0)s(0)

Stationarity of the Lagrangean requires

DaL = e
−rtDaH a(t), s(t),λ(t , t) = 0

DsL = e
−rt DsH a(t), s(t),λ(t), t + λ̇− rλ(t) = 0

DS(T )L = e
−rT vI(s(T ))− λ(T ) = 0

Since e−rt > 0 (exercise 2.6), these imply

DaH a(t), s(t),λ(t , t) = 0

λ̇ = rλ(t)−DsH a(t), s(t),λ(t), t

λ(T ) = vI(s(T ))

Of course, the optimal solution must also satisfy the transition equation

ṡ = g(a(t), s(t), t)
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More generally, the Maximum Principle requires that the Hamiltonian be max-
imized along the optimal path. Therefore the necessary conditions for an optimal
solution of the continuous time problem (7.36) include

a∗(t) maximizes H a(t), s(t),λ(t), t

ṡ = DλH a(t), s(t),λ(t , t) = g(a(t), s(t), t)

λ̇ = rλ(t)−DsH a(t), s(t),λ(t), t

λ(T ) = vI(s(T ))

Theorem 7.2 (Continuous maximum principle) If a(t) solves the continuous fi-
nite horizon dynamic optimization problem

max
a(t)

T

0

e−rtf(a(t), s(t), t)dt+ e−rT v(s(T ))

subject to ṡ = g(a(t), s(t), t)

given the initial state s0, then there exists a function λ(t) such that

a∗(t) maximizes H a(t), s(t),λ(t), t

ṡ = DλH a(t), s(t),λ(t , t) = g(a(t), s(t), t)

λ̇ = rλ(t)−DsH a(t), s(t),λ(t), t

vI(s(T )) = λ(T )

where H is the Hamiltonian

H(a(t), s(t),λ(t), t) = f(a(t), s(t), t) + λ(t)g(a(t), s(t), t) (7.38)

Remark 7.6 (Form of the Hamiltonian) As in the discrete case (Remark 7.4), the
Hamiltonian defined in equation (7.38) is known as the current value Hamiltonian since
it measures total return at time t. Many authors present the continuous time maximum
principle using the initial value Hamiltonian defined as

H̃(a(t), s(t), µ(t), t) = e−rtf(a(t), s(t), t) + µ(t)g(a(t), s(t), t)

in terms of which the necessary conditions for an optimum are

a∗(t) maximizes H̃ a(t), s(t), µ(t), t

ṡ = DµH̃ a(t), s(t), µ(t , t) = g(a(t), s(t), t)

µ̇ = −DsH̃ a(t), s(t), µ(t), t (7.39)

e−rT vI(s(T )) = µ(T )

While these conditions are almost identical to the corresponding conditions for the discrete
time problem, there is a difference in sign between (7.39) and the corresponding condition

µt = DsH a(t), s(t), µ(t), t

for discrete time. The discrete time problem can be formulated in a way which is strictly
analogous to the continuous time problem (see Dorfman 1969), but this formulation is a
less natural extension of static optimization.
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Exercise 7.12 Show that the necessary conditions for an optimum expressed in terms of
the initial value Hamiltonian are

a∗(t) maximizes H̃ a(t), s(t), µ(t), t

ṡ = DµH̃ a(t), s(t), µ(t , t) = g(a(t), s(t), t)

µ̇ = −DsH̃ a(t), s(t), µ(t), t

e−rT vI(s(T )) = µ(T )

Example 7.7 (Calculus of variations) The classic calculus of variations treats prob-
lems of the form

max
T

0

f(ṡ(t), s(t), t)dt

given s(0) = s0. Letting a(t) = ṡ(t), this can be cast as a standard dynamic optimization
problem

max
a(t)

T

0

f(a(t), s(t), t)dt+ v(s(T ))

subject to ṡ = a(t)

given s(0) = s0. The Hamiltonian is

H(a(t), s(t),λ(t), t) = f(a(t), s(t), t) + λ(t)a(t)

The necessary conditions are

DaH(a(t), s(t),λ(t), t) = fa(a(t), s(t), t) + λ(t) = 0 (7.40)

ṡ = a(t)

λ̇ = −DsH(a(t), s(t),λ(t), t) = −fs(a(t), s(t), t) (7.41)

Differentiating (7.40) gives

λ̇ = −Dtfa(a(t), s(t), t)
Substituting in (7.41) and setting a = ṡ we get

fs(ṡ(t), s(t), t) = Dtfṡ(ṡ(t), s(t), t)

which is the original Euler equation.
As we argued in the discrete time case, an optimal solution for an infinite horizon

problem must also be optimal over any finite period. It follows that the necessary
conditions for the finite horizon problem (with exception of the transversality condition)
are also necessary for the infinite horizon problem (Halkin 1974).

Corollary 7.2.1 (Infinite horizon continuous time) If a(t) solves the continuous
infinite horizon dynamic optimization problem

max
a(t)

∞

0

e−rtf(a(t), s(t), t)dt

subject to ṡ = g(a(t), s(t), t)

given the initial state s0, then there exists a function λ(t) such that

a∗(t) maximizes H a(t), s(t),λ(t), t

ṡ = DλH a(t), s(t),λ(t , t) = g(a(t), s(t), t)

λ̇ = rλ(t)−DsH a(t), s(t),λ(t), t
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Example 7.8 (Optimal economic growth) Formulated in continuous time, the prob-
lem of optimal economic growth is

max
∞

0

e−rtu(c(t))dt

subject to k̇ = F (k(t))− c(t)

given k(0) = k0. The Hamiltonian is

H(c(t), k(t),λ(t), t) = u(c(t)) + λ(t) F (k(t))− c(t)

The necessary conditions are

DcH(c(t), k(t),λ(t), t) = u
I(c(t))− λ(t) = 0 (7.42)

k̇ = F (k(t))− c(t)
λ̇ = rλ(t)−DsH(c(t), k(t),λ(t), t)
= rλ(t)− λ(t)F I(k(t))
= (r − F I(k(t)))λ(t)

Condition (7.41) implies

λ(t) = uI(c(t)) and λ̇ = uII(c(t))ċ

Substituting these in (7.42) gives the Euler equation

uII(c(t))ċ = (r − F I(k(t)))uI(c(t))

or

ċ = − u
I(c(t))
uII(c(t))

(F I(k(t))− r)

We observe that

ċ 0 ⇐⇒ F I(k(t)) r

which is equivalent to the conclusion we derived using a discrete model in Example 7.4.

Exercise 7.13 (Investment in the competitive firm) A continuous time version of
the investment model (Example 7.5) is

max
I(t)

∞

t=0

e−rt p(t)f(k(t))− qI(t)

subject to k̇ = I(t)− δk(t)
k(0) = k̄0

where for simplicity we assume that k is the only input. Show that the necessary condition
for an optimal investment policy is

p(t)f I(k(t)) = (r + δ)q



CHAPTER 7. DYNAMIC OPTIMIZATION 25

c

c∗

k∗
k

k̇ = 0

ċ = 0

Figure 7.1: A phase diagram

7.3.1 Phase diagrams

The optimal growth example is a typical stationary dynamic optimization problem, in
which the functions f and g are independent of time, which enters only through the
discount factor e−rt. As in the discrete case, it may be reasonable to assume that the
system converges to a steady state. In simple cases, convergence to the steady state
can be analyzed using a phase diagram. We illustrate by means of an example.
The dynamics of the optimal economic growth problem are described by the fol-

lowing pair of differential equations

ċ = − u
I(c(t))
uII(c(t))

(F I(k(t))− r) (7.43)

k̇ = F (k(t))− c(t) (7.44)

A solution of (7.43) and (7.44) is a pair of functions c(t) and k(t), each of which can
be represented by a path or trajectory in (k, c) space (see Figure 7.1). A steady state
requires both ċ = 0 and k̇ = 0. Each condition determines a locus in (k, c) space, with
the steady state at their intersection. These loci divide the space into four regions,
in each of which the paths of c and k have different directions. A unique path or
trajectory passes through every point. In particular, there is a unique path passing
through the steady state equilibrium. By analysing the direction of flow in each region,
we observe that this path leads towards the steady state from the two regions through
which it passes. However, any deviation from this steady state path leads away from
the equilibrium. We conclude that for each initial capital stock k0, there is a unique
optimal path leading to the steady state, while all other paths eventually lead away
from the steady state. Thus the steady state equilibrium is a saddle point. This unique
optimal path can be attained by chosing the appropriate level of initial consumption
and thereafter following the optimal path determined by (7.43) and (7.44).

Example 7.9 (Optimal investment with adjustment costs) A shortcoming of the
investment model of example 7.5 and exercise 7.13 is that the cost of investment is assumed
to be linear, which precludes adjustment costs. A more realistic model allows for the cost
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of investment to be convex, so that the dynamic optimization problem is

∞

t=0

e−rt p(t)f(k(t))− c(I(t))

k̇ = I(t)− δk(t)
k(0) = k̄0

with cII(I(t)) > 0. The Hamiltonian is

H = e−rt p(t)f(k(t))− c(I(t)) + λ(t) I(t)− δk(t)
The first-order conditions are

HI = −e−rtcI(I(t)) + λ(t) = 0 (7.45)

k̇ = I(t)− δk(t)
λ̇ = −Hk = −e−rtp(t)f I(k(t)) + δλ(t) (7.46)

Equation (7.45) implies

λ(t) = e−rtcI(I(t)) (7.47)

or

µ(t) = ertλ(t) = cI(I(t)) (7.48)

µ(t) is the current value multiplier, the shadow price of capital. It can be shown that

µ(t) =
∞

t

e−r(s−t)e−δ(s−t)p(t)f I(k(t))dt =
∞

t

e−(r+δ)(s−t)p(t)f I(k(t))dt (7.49)

which is the present value of the total additional revenue (marginal revenue product) accru-
ing to the firm from an additional unit of investment, allowing for depreciation. Equation
(7.49) states simply that, at each point of time, investment is taken to the point at which
the marginal value of investment is equal to its marginal cost. Equations (7.48) and (7.49)
together with the transition equation determine the evolution of the capital stock, but it
is impossible to obtain a closed form solution without further specification of the model.
Instead, it is more tractable to resort to study the qualitative nature of a solution using a
phase diagram.
Differentiating (7.47)

λ̇ = e−rtcII(I)İ − re−rtcI(I)
Substituting into (7.49) and using (7.48) yields

e−rtcII(I(t))İ − re−rtcI(I(t)) = −e−rtp(t)f I(k(t)) + δλ(t)

= −e−rtp(t)f I(k(t)) + δe−rtcI(I(t))

Cancelling the common terms and rearranging

İ =
(r + δ)cI(I(t))− p(t)f I(k(t))

cII(I(t))

The optimal policy is characterised by a pair of differential equations

İ =
(r + δ)cI(I(t))− p(t)f I(k(t))

cII(I(t))

k̇ = I(t)− δk(t)
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Figure 7.2: Optimal investment with adjustment costs

In the steady state solution (I∗, k∗)

k̇ = 0 =⇒ I∗ = δk∗

İ = 0 =⇒ p(t)f I(k∗) = (r + δ)cI(I∗)

In the steady state, there is no net investment and the capital stock k∗ is determined where
the marginal benefit of further investment is equal to the marginal cost. The steady state
equilibrium is a saddlepoint, with a unique optimal path to the equilibrium from any initial
state (Figure 7.2).

Exercise 7.14 (Dynamic limit pricing) Consider a market where there is a dominant
firm and a competitive fringe. The residual demand facing the dominant firm is

f(p(t)) = a− x(t)− bp(t)
where x(t) is the output of the competitive fringe. Entry and exit of fringe firms depends
upon the price set by the dominant firm. Specifically

ẋ(t) = k(p(t)− p̄)
We can think of p̄ as being the marginal cost of the competitive fringe. For simplicity, we
assume that the dominant firm has zero marginal cost, so that p̄ is its cost advantage.
If the dominant firm exploits its market power by pricing above the “limit price” p̄, it

increases current profits at the expense of market share. Investigate the optimal pricing
policy to maximize the discounted present value of profits

∞

0

e−rtp(t)(a− x(t)− bp(t))dt

where r is the rate of interest. What happens to the market share of the dominant firm in
the long run?

7.4 Dynamic programming

Dynamic programming is an alternative approach to dynamic optimization which fa-
cilitates incorporation of uncertainty and lends itself to electronic computation. Again
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consider the general dynamic optimization problem (7.7)

max
at∈At

T−1

t=0

βtft(at, st) + βT vT (sT ) (7.50)

subject to st+1 = gt(at, st), t = 0, . . . , T − 1
where we have added a time subscript to the value of the terminal state v. The
(maximum) value function for this problem is

v0(s0) = max
at∈At

T−1

t=0

βtft(at, st) + βT vT (sT ) : st+1 = gt(at, st), t = 0, 1, . . . , T − 1

By analogy, we define the value function for intermediate periods

vt(st) = max
at∈At

T−1

τ=t

βτ−tfτ (aτ , sτ ) + βT vT (sT ) : sτ+1 = gτ (aτ , sτ ), τ = t, t+ 1, . . . , T − 1

The value function measures the best that can be done given the current state and
remaining time. It is clear that

vt(st) = max
at∈At

{ft(at, st) + βvt+1(st+1) : st+1 = gt(at, st)}
= max
at∈At

{ft(at, st) + βvt+1 gt(at, st) } (7.51)

This fundamental recurrence relation, which is known as Bellman’s equation, makes
explicit the tradeoff between present and future values. It embodies the principle of
optimality:

An optimal policy has the property that, whatever the intial state and
decision are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision (Bellman, 1957).

The principle of optimality asserts time-consistency of the optimal policy.
Assuming vt+1 is differentiable and letting

λt+1 = v
I
t+1(st+1)

the first-order condition for the maximization in Bellman’s equation (7.51) is

Datft(at, st) + βλt+1Datgt(at, st) = 0, t = 0, 1, . . . , T − 1 (7.52)

which is precisely the Euler equation (7.11) derived using the Lagrangean approach.
Moreover, the derivative of the value function λt = v

I
t(st) follows an analogous recursion

which can be shown as follows. Let at = ht(st) define the policy function, the solution
of the maximization in (7.52). Then

v(st) = ft(ht(st), st) + βvt+1(gt(ht(st), st))

Assuming h and v are differentiable (and suppressing function arguments for clarity)

λt = v
I
t(st) = DaftDsht +Dsft + βλt+1(DagtDsht +Dsgt)

= Dsft + βλt+1Dsgt + (Daft + βλt+1Dagt)Dsht

where λt+1 = v
I(st+1). But the term in brackets is zero (by the first-order condition

(7.52)) and therefore

λt = Dstft(at, st) + βλt+1Dstgt(at, st), t = 1, 2, . . . , T − 1
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which is precisely the recursion (7.12) we previously derived using the Lagrangean
technique. Coupled with the transition equation and the boundary conditions, the
optimal policy is characterised by

Datft(at, st) + βλt+1Datgt(at, st) = 0, t = 0, 1, . . . , T − 1 (7.53)

Dstft(at, st) + βλt+1Dstgt(at, st) = λt, t = 1, 2, . . . , T − 1 (7.54)

st+1 = gt(at, st), t = 0, 1, . . . , T − 1 (7.55)

λT = v
I(sT ) (7.56)

This should not be surprising. Indeed, it would be disturbing if, on the contrary,
our characterization of an optimal solution varied with the method adopted. The
main attraction of dynamic programming is that it offers an alternative method of
computation, backward induction, which is particularly amenable to programmable
computers. This is illustrated in the following example.

Example 7.10 (Closing the mine) Consider again the question posed in example 7.1.
Suppose you own a mine. Your mining licence will expire in three years and will not be
renewed. There are known to be 128 tons of ore remaining in the mine. The price is fixed
at $1 a ton. The cost of extraction is q2t /xt where qt is the rate of extraction and xt is
the stock of ore. Ignoring discounting for simplicity (β = 1), the optimal production plan
solves

max
qt,xt

3

t=0

1− qt
xt

qt

subject to xt+1 = xt − qt, t = 0, 1, 2

Previously (example 7.1) we solved this problem using the Lagrangean approach. Here, we
solve the same problem using dynamic programming and backward induction.
First, we observe that v3(x3) = 0 by assumption. Therefore

v2(x2) = max
q

1− q

x2
q + v3(x3)

= max
q

1− q

x2
q

which is maximized when q = x2/2 giving

v2(x2) = 1− x2
2

1

x2

x2
2
=
x2
4

Therefore

v1(x1) = max
q

1− q

x1
q + v2(x2)

= max
q

1− q

x1
q +

1

4
(x1 − q)

The first-order condition is

1− 2 q
x1
− 1
4
= 0

which is satisfied when q = 3x1/8 so that

v1(x1) = 1− 3x1
8x1

3x1
8
+
5x1
32

=
15

64
x1 +

5

32
x1 =

25

64
x1
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In turn

v0(x0) = max
q

1− q

x0
q + v1(x1)

= max
q

1− q

x0
q +

25

64
(x0 − q)

The first-order condition is

1− 2 q
x0
− 25
64
= 0

which is satisfied when q = 39x0/128. The optimal policy is

t xt qt
0 128 39
1 89 3

889 = 33.375
2 5

889 = 55.625
5
1689 = 27.8125

In summary, we solve the problem by computing the value function starting from the
terminal state, in the process of which we compute the optimal solution.

Typically, economic models are not solved for a specific solutions, but general so-
lutions are characterized by relationships such as the Euler equation (7.20). In such
cases, the dynamic programming approach often provides a more elegant derivation of
the basic Euler equation characterising the optimal solution than does the Lagrangean
approach, although the latter is more easily related to static optimization. This is
illustrated in the following example.

Example 7.11 (Optimal economic growth) Consider again the optimal economic
growth model (example 7.2)

max
ct

T−1

t=0

βtu(ct) + βT v(kT )

subject to kt+1 = F (kt)− ct
where c is consumption, k is capital, F (kt) is the total supply of goods available at the end
of period t, comprising current output plus undepreciated capital, and v(kT ) is the value
of the remaining capital at the end of the planning horizon.
Bellman’s equation is

vt(wt) = max
ct
{u(ct) + βvt+1(kt+1)}

= max
ct
{u(ct) + βvt+1 F (kt)− ct }

The first-order condition for this problem is

uI(ct)− βvIt+1 F (kt)− ct = 0 (7.57)

But

vt+1(kt+1) = max
ct+1

{u(ct+1) + βvt+2 F (kt+1 − ct+1) } (7.58)

By the envelope theorem (theorem 6.2)

vIt+1(kt+1) = βvIt+2 F (kt+1)− ct+1) F I(kt+1) (7.59)
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The first-order condition for (7.58) is

uI(ct+1)− βvIt+2 F (kt+1)− ct+1) = 0
Substituting in (7.59) gives

vIt+1(kt+1) = u
I(ct+1)F I(kt+1)

Substituting the latter in (7.57) gives the Euler equation (7.20)

uI(ct) = βuI(ct+1)F I(kt+1)

Note how this derivation of (7.20) is simpler and more elegant than the corresponding
analysis in example 7.2.

Exercise 7.15 (Optimal savings) In the optimal saving model discussed in Section 1

max
T−1

t=0

βtu(ct)

subject to wt+1 = (1 + r)(wt − ct), t− 0, 1, . . . , T − 1
use dynamic programming to derive (7.5).

7.4.1 Infinite horizon

In the stationary infinite horizon problem

max
∞

t=0

βtf(at, st)

subject to st+1 = g(at, st), t = 0, 1, . . . ,

the value function

v(s0) = max
∞

t=0

βtf(at, st) : st+1 = g(at, st), t = 0, 1, . . .

is also stationary (independent of t) . That is, the value function is common to all time
periods, although of course its value v(st) will vary with st. Bellman’s equation

v(st) = max
at
{f(at, st) + v(g(at, st))}

must hold in all periods and all states, so we can dispense with the subscripts

v(s) = max
a
{f(a, s) + βv(g(a, s))} (7.60)

The first-order conditions for (7.60) can be used to derive the Euler equation to char-
acterize the optimal solution, as we did in Example 7.11.
In many economic models, it is possible to dispense with the separate transition

equation by identifying the control variable in period t with the state variable in the
subsequent period. For example, in the economic growth model, we can consider the
choice in each period effectively as given capital stock today, select capital stock to-
morrow, with consumption being determined as the residual. Letting xt denote the
decision variable, the optimization problem becomes

max
x1,x2,...

∞

t=0

βtf(xt, xt+1)

subject to xt+1 ∈ G(xt), t = 0, 1, 2, . . .
x0 ∈ X given



CHAPTER 7. DYNAMIC OPTIMIZATION 32

This was the approach we took in example 2.32. Bellman’s equation for this problem
is

v(x) = max
y
{f(x, y) + βv(y)} (7.61)

This formulation enables an especially elegant derivation of the Euler equation. The
first-order condition for the maximum in (7.61) is

fy + βvI(y) = 0

Using the envelope theorem (theorem 6.2)

vI(y) = fx

Substituting, the first-order condition becomes

fy + βfx = 0

Example 7.12 (Optimal economic growth) Substituting for ct using the transition
equation

ct = F (kt)− kt+1
the optimal growth problem (example 7.11) can be expressed as

max
∞

t=0

βtu F (kt)− kt+1

Bellman’s equation is

v(kt) = max
kt+1

{u(F (kt)− y) + βv(kt+1)}

The first-order condition for a maximum is

−uI(ct) + βvI(kt+1) = 0

where c(t) = F (kt)− kt+1. Applying the envelope theorem
vI(kt) = uI(ct)F I(kt)

and therefore

vI(kt+1) = uI(ct+1)F I(kt+1)

Substituting in the first-order condition, we derive the Euler equation

uI(ct) = βuI(ct+1)F I(kt+1)

For a stationary infinite horizon problem, Bellman’s equation (7.60) or (7.61) de-
fines a functional equation, an equation in which the variable is the function v. From
another perspective, Bellman’s equation defines an operator v → v on the space of
value functions. Under appropriate conditions, this operator has a unique fixed point,
which is the unique solution of the functional equation (7.61). On this basis, we can
guarantee the existence and uniqueness of the optimal solution to an infinite horizon
problem, and also deduce some of the properties of the optimal solution (exercises
2.125, 2.126 and 3.158 and examples 2.93 and 3.64).
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In those cases in which we want to go beyond the Euler equation and these deducible
properties to obtain an explicit solution, we need to find the solution v of this functional
equation. Given v, it is straightforward to solve (7.60) or (7.61) successively to compute
the optimal policy. How do we solve the functional equation? Backward induction,
which we used in example 7.10, is obviously precluded with the infinite horizon. There
are at least three practical approaches to solving Bellman’s equation in infinite horizon
problems

• informed guess and verify
• value function iteration
• policy function iteration (Howard improvement algorithm)
In simple cases, it may be possible to guess the functional form of the value function,

and then verify that it satisfies Bellman’s equation. Given that Bellman’s equation has
a unique solution, we can be confident that our verified guess is the only possible solu-
tion. In other cases, we can proceed by successive approximation. Given a particular
value function v1, (7.61) defines another value function v2 by

v2(s) = max
a
{f(a, s) + βv1(g(a, s))} (7.62)

and so on. Eventually, this iteration converges to the unique solution of (7.62). Policy
function iteration starts with a feasible policy h1(s) and computes the value function
assuming that policy is applied consistently

v1(s) = max
∞

t=0

βtf(h1(st), st) subject to st+1 = g(at, st), t = 0, 1, . . . ,

Given this approximation to the value function, we compute a new policy function h2

which solves Bellman’s equation assuming this value function, that is

h2(s) = argmax
a
{f(a, s) + βv1(g(a, s))}

and then use this policy function to define a new value function v2. Under appropriate
conditions, this iteration will converge to the optimal policy function and corresponding
value function. In many cases, convergence is faster than mere value function iteration
(Ljungqvist and Sargent 2000: 33).

Example 7.13 (Optimal economic growth) In the optimal economic growth model
(example 7.11, assume that utility is logarithmic and the technology Cobb-Douglas, so that
the optimization problem is

max
ct

T−1

t=0

βt log(ct) + v(kT )

subject to kt+1 = Ak
α
t − ct

with A > 0 and 0 < a < 1.
Starting with an initial value function

v1(k) = 0

the first iteration implies an optimal consumption level of Akα and a second value function
of

v1(k) = logA+ α log(k)
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Continuing in this fashion, we find that the iterations converge to

v(k) = C +D log(k)

with

C =
1

1− β log(A− αβA) + αβ

1− αβ log(αβA) and D =
α

1− αβ

Exercise 7.16 Verify that the iteration described in the previous example converges to

v(k) = C +D log(k)

with

C =
1

1− β log(A− αβA) + αβ

1− αβ log(αβA) and D =
α

1− αβ

Exercise 7.17 Suppose that we (correctly) the conjecture that the value function takes
the form

v(k) = C +D log(k)

with undetermined coefficients C and D. Verify that this satisfies Bellman’s equation with

C =
1

1− β log(A− αβA) + αβ

1− αβ log(αβA) and D =
α

1− αβ

7.5 Notes

Dixit (1990) gives a nice intuitive introduction to dynamic optimization in economics,
emphasizing the parallel with static optimization. Another introductory treatment,
focusing on resource economics, can be found in Conrad and Clark(1987).
Many texts aimed at economists follow the historical mathematical development,

starting with the calculus of variations and then proceeding to optimal control theory.
Examples include Chiang (1992), Kamien and Schwartz (1991) and Hadley and Kemp
(1971), listed in increasing level of difficulty. The problem with this approach is that
it requires sustained effort to reach the modern theory. A useful exception to this
traditional structure is Leonard and Long (1992), which starts with the maximum
principle, after reviewing static optimization and differential equations. They also
provide a good discussion of the use of phase diagrams in analysing dynamic models.
Leading texts presenting the dynamic optimizing approach to macroeconomics in-

clude Blanchard and Fischer (1989), Ljungqvist and Sargent (2000), Sargent (1987) and
Stokey and Lucas (1989). Our discussion of the Howard policy improvement algorithm
is based on Ljungqvist and Sargent (2000)
Example 7.1 is adapted from Conrad and Clark (1987) Exercise 7.9 is based on

Stiglitz (1976). Exercise 7.11 is adapted from Tirole (1988). The continuous time
version of the optimal economic growth model (Example 7.8), known as the Ramsey
model, is the prototype for the study of growth and intertemporarl allocation (see
Blanchard and Fischer 1989). Exercise 7.14 is adapted from Gaskins (1971).
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Solutions to exercises

7.1 With u(c) = log c, uI(c) = 1/c. Substituting in (7.2)

c1
βc0

= 1 + r

or

c1 = β(1 + r)c0

Substituting in the budget constraint

β(1 + r)c0 = (1 + r)(w − c0)
Solving for c1 and c2 gives

c0 =
w

1 + β
, c1 = (1 + r)

βw

1 + β

7.2 The first-order condition is

Intertemporal MRS =
uI(c0)
βuI(c1)

=
1

β

c1
c0
= 1 + r

which implies that

c0 = αw, c1 = (1− α)w
where

α =
1

1 + β2(1 + r)

so that

Drc0 < 0

7.3 Let wt denote the wealth remaining at the beginning of period t. The consumer
should consume all remaining wealth in period T − 1 so that
cT−1 = wT−1 = (1 + r)(wT−2 − cT−2)

= (1 + r)wT−2 − (1 + r)cT−2
= (1 + r)2(wT−3 − cT−3)− (1 + r)cT−2
= (1 + r)2wT−3 − (1 + r)2cT−3 − (1 + r)cT−2
= (1 + r)T−1w0 − (1 + r)T−1c0 − · · ·− (1 + r)2cT−3 − (1 + r)cT−2

which can be rewritten as

(1 + r)
T−1

c0 + · · ·+ (1 + r)2cT−3 + (1 + r)cT−2 + cT−1 = (1 + r)T−1w0
or

(1 + r)T c0 + · · ·+ (1 + r)3cT−3 + (1 + r)2cT−2 + (1 + r)cT−1 = (1 + r)Tw0
or

c0 +
1

1 + r
c1 + · · ·+ 1

(1 + r)T−1
cT−1 = w0
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The consumer’s problem is

max
ct

T−1

t=0

βtu(ct)

subject to (1 + r)T c0 + · · ·+ (1 + r)2cT−2 + (1 + r)cT−1 = (1 + r)Tw0
The Lagrangean for this problem is

L =
T−1

t=0

βtu(ct)− λ (1 + r)T c0 + · · ·+ (1 + r)2cT−2 + (1 + r)cT−1 = (1 + r)Tw0

The first-order conditions are

DctL = βtuI(ct)− λ(1 + r)T−t = 0, t = 0, 1, . . . , T − 1
which imply

βtuI(ct) = λ(1 + r)T−(t+1)(1 + r) = βt+1uI(ct+1)(1 + r)

or

uI(ct) = βuI(ct+1)(1 + r), t = 0, 1, . . . , T − 1
which is the same intertemporal allocation condition (7.5) obtained using separate
constraints for each period.

7.4 Setting at = ct, st = wt, f(at, st) = u(ct), g(at, st) = (1 + r)(wt − ct), and
v(sT ) = 0, the optimality conditions (7.11) to (7.14) are

uI(ct)− βλt+1(1 + r) = 0
βλt+1(1 + r) = λt

wt+1 = (1 + r)(wt − ct)
λT = 0

which together imply

uI(ct) = βuI(ct+1)(1 + r), t = 0, 1, . . . , T − 1
as required.

7.5 Setting at = ct, st = kt, f(at, st) = u(ct), g(at, st) = F (kt) − ct and using µ to
denote the Lagrange multipliers, the necessary conditions (7.21) to (7.24) are

βtuI(ct)− µt+1 = 0 t = 0, 1, . . . , T − 1
µt+1F

I(kt) = µt t = 1, 2, . . . , T − 1
kt+1 = F (kt)− ct t = 0, 1, . . . , T − 1
µT = v

I(kT )

Substituting µt = βtλt and µt+1 = βt+1λt+1 gives

βtuI(ct)− βt+1λt+1 = 0 t = 0, 1, . . . , T − 1
βt+1λt+1F

I(kt) = βtλt t = 1, 2, . . . , T − 1
kt+1 = F (kt)− ct t = 0, 1, . . . , T − 1
µT = v

I(kT )
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or

uI(ct) = βλt+1 = 0 t = 0, 1, . . . , T − 1
λt = βλt+1F

I(kt) t = 1, 2, . . . , T − 1
kt+1 = F (kt)− ct t = 0, 1, . . . , T − 1
µT = v

I(kT )

which are the same as conditions (7.15) to (7.18).

7.6 Assigning multiplier µ to the terminal constraint

h(sT ) = s̄− sT � 0
the Lagrangean for this problem is

L =
T−1

t=0

βtft(at, st)−
T−1

t=0

βt+1λt+1 st+1 − gt(at, st) − βTµ(s̄− sT )

which can be rewritten as

L = f0(a0, s0) + βλ1g0(a0, s0)

+
T−1

t=1

βt ft(at, st) + βλt+1gt(at, st)− λtst

− βTλT sT − βTµ(s̄− sT )
A necessary condition for optimality is the existence of multipliers λ1,λ2, . . . ,λT such
that the Lagrangean is stationary, that is for t = 0, 1, . . . , T − 1

DatL = βt Datft(at, st) + βλt+1Datgt(at, st) = 0

Similarly, in periods t = 1, 2, . . . , T − 1, the resulting st must satisfy
DstL = βt Dstft(at, st) + βλt+1Dstgt(at, st)− λt = 0

as well as the transition equations

st+1 = gt(at, st), t = 0, . . . , T − 1
The equations imply (7.11) to (7.13). The terminal state sT must satisfy

DsTL = βT − λT + µ = 0

with µ ≥ 0 and µ(s̄− sT ) = 0. This implies that λT = µ ≥ 0 and therefore we have
λT ≥ 0 and λT (s̄− sT ) = 0

As in theorem 7.1, these conditions are also sufficient.

7.7 Necessity of the optimality conditions follows from Corollary 5.2.1. As in Theorem
7.1, the necessary conditions imply that λt ≥ 0 for every t. Therefore the Lagrangean
is concave, so that stationarity is sufficient for a global optimum (Exercise 5.20).

7.8 Let T I denote the period in which the resource is exhausted, that is xT I = 0 while
xt > 0 for all t < T I. This implies that λt+1 = λt for all t < T . That is, λt = λT I
constant for t = 0, 1, . . . , T I − 1. The periods are of two types.
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Productive periods (qt > 0) In productive periods, the allocation of extraction is
arranged so that the discounted marginal profit is equal in all periods, that is

βt mt(qt)− cIt(qt) = λT I

Nonproductive periods (qt = 0) In nonproductive periods, nothing is extracted,
since the marginal profit of the first unit is less than its opportunity cost λT I .

βtmt(qt) � λT I

7.9 In a competitive industry with zero extraction costs, Hotelling’s rule implies that
the price rises at the rate of interest, that is

pt+1
pt

= 1 + r (7.63)

Otherwise, there are opportunities for profitable arbitrage. To compare with the im-
plicit rate of price change under monopoly, we note that marginal revenue can be
rewritten as

mt = pt(qt) + p
I(qt)qt = pt(1 + pI(qt)

qt
pt
) = pt(1 +

1

6t
)

where 6t is the elasticity of demand in period t. Substituting in (7.28), the price under
monopoly evolves according to the equation

pt+1 1 + 1
6t+1

pt 1 + 1
6t

= 1 + r

or

pt+1
pt

= (1 + r)
1 + 1

6t

1 + 1
6t+1

(7.64)

Comparing (7.63) and (7.64), we conclude that in a monopoly the price will rise
faster (slower) than the rate of interest if the elasticity of demand (|6|) is increasing
(decreasing). This implies that a monopoly will extract an exhaustible resource at a
slower (faster) rate than a competitive industry if the elasticity of demand increases
(decreases) over time.
Increasing elasticity is likely if substitutes develop over time. Therefore, market

concentration is likely to impart a conservative bias to the extraction of an exhaustible
resource. The basic insight of this problem is that the monopolists, like the competitor,
will eventually exhaust the resource. The monopolist cannot profit by restricting total
output, as in the case of a produced commodity. They can only exploit market power
by rearranging the pattern of sales over time.
Contrary to the popular belief that a monopoly will rapidly deplete an exhaustible

resource, analysis suggests that monopolists may be more conservationist than a com-
petitive market. As we showed above, this will be the case if demand elasticity increases
over time, as might be expected as substitutes become available. Extraction costs may
also impart a conservationist bias to the monopoly.

7.10 If investment is irreversible (It ≥ 0), the firm’s problem is

max
∞

t=0

δtπt =
∞

t=0

δt ptf(kt, lt)− wtlt − qIt
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subject to It ≥ 0

k0 = k̄0, kt+1 = (1− ρ)kt + It, t = 0, 1, 2, . . .

Note that we also require kt ≥ 0 and lt ≥ 0 but these constraints are presumably
not binding in the optimal solution and can be ignored in the analysis. However, the
nonnegativity constraint It ≥ 0 is quite possibly binding and an interior solution cannot
be guaranteed. The necessary conditions become

Hl = ptfl(kt, lt)− wt = 0
max
I≥0

H

kt+1 = (1− ρ)kt + It
λt = fk(kt, lt) + δλt+1(1− ρ)

Maximising the Hamiltonian with respect to I (7.64) requires

HI = −q + δλt+1 � 0 It ≥ 0 and It(q − δλt+1) = 0

In other words, the δλt+1 � q in every period and the firm invests It > 0 if and only if
δλt+1 = q
As in the previous question, optimality requires adjusting labour in each period so

that

ptfl(kt, lt) = wt

The necessary conditions for capital accumulation are a little more complicated. As-
sume It−1 > 0. Then δλt = q so that λt = q/δ. Substituting in (7.63) and using
(7.64)

q

δ
= fk(kt, lt) + δλt+1(1− ρ)
� fk(kt, lt) + q(1− ρ)

which implies

fk(kt, lt) ≥ (r + q)q

with

fk(kt, lt) = (r + q)q ⇐⇒ It > 0

7.11 (a) A competitive recycling industry will produce where price equals marginal
cost, that is pt = C I(xt). Since C is assumed to be strictly convex, CI has an
inverse x such that

xt = x(pt)

By the inverse function theorem

xI =
1

C II
> 0

That is, x is increasing in p.
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(b) The monopolist’s optimization problem is

max
∞

t=0

βt(P (qt)− c)yt

where qt = yt − xtqt−1
From the constraint yt = qt−xtqt−1. Substituting for yt in the objective function,
the problem becomes

max
q1,q2,...

Π =
∞

t=0

βt(P (qt)− c)(qt − xtqt−1)

Each qt occurs in two terms of this sum, that is

Π = · · ·+ βt(P (qt)− c)(qt − xtqt−1) + βt+1(P (qt+1)− c)(qt+1 − xt+1qt)

Recalling that xt = x P (qt) , the first order conditions for an optimal policy are

DqtΠ = βt (pt − c)(1− P IxIqt−1) + P I(qt − xqt−1) − βt+1(p− c)x = 0

In a steady state equilibrium, qt = q, pt = p, xt = x for all t. Dividing by β
t, the

equilibrium condition becomes

(p− c)(1− P IxIq) + P I(q − xq)− β(p− c)x = 0

Rearranging

(p− c)(1− βx− xIP Iq) = −(1− x)P Iq (7.65)

(c) Since P I < 0 and x < 1 the right hand side of (7.65) is positive. Since xI > 0,
xIP Iq < 0 and therefore 1− βx− xIP Iq > 1− βx > 0. Therefore p > c.

(d) Dividing (7.65) by p and rearranging

p− c
p

= −P
Iq
p

1− x
1− βx− xIP Iq

= −1
6

1− x
1− βx− xIP Iq

where

6 =
P

P Iq

is the price elasticity of demand. Since β < 1, x < 1, xI > 0, P I < 0 and
(p− c) > 0

p− c
p

< −1
6

which is the optimal markup of monopolist in the absence of recycling. We
conclude that recycling lowers the market price and increases the quantity sold.
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7.12 The current value Hamiltonian is

H(a(t), s(t),λ(t), t) = e−rtf(a(t), s(t), t) + λ(t)g(a(t), s(t), t)

while the initial value Hamiltonian is

H̃(a(t), s(t), µ(t), t) = e−rtf(a(t), s(t), t) + µ(t)g(a(t), s(t), t)

Letting µ(t) = e−rtλ(t), we can see that the current and initial value Hamiltonians are
related by the equations

H̃ = e−rtH and H = ertH̃

so that

DsH a(t), s(t),λ(t), t = ertDsH̃ a(t), s(t), µ(t), t (7.66)

DλH a(t), s(t),λ(t), t = DµH̃ a(t), s(t), µ(t), t = g(a(t), s(t), t) (7.67)

In terms of the current value Hamiltonian, the necessary conditions for optimality are

a∗(t) maximizes H a(t), s(t),λ(t), t

ṡ = DλH a(t), s(t),λ(t , t) = g(a(t), s(t), t) (7.68)

λ̇− rλ(t) = −DsH a(t), s(t),λ(t), t (7.69)

vI(s(T )) = λ(T )

Since ert is monotonic, a∗(t) maximizes H a(t), s(t),λ(t), t if and only if it maximizes

H̃ a(t), s(t), µ(t), t . Using (7.68) and (7.67)

ṡ = DλH a(t), s(t),λ, t , t) = DµH̃ a(t), s(t), µ(t), t = g(a(t), s(t), t)

Differentiating λ(t) = ertµ(t) gives

λ̇ = ertµ̇+ rertµ(t) = ertµ̇+ rλ(t)

so that

λ̇− rλ(t) = ertµ̇
Substituting in (7.69) and using (7.66)

ertµ̇ = λ̇− rλ(t) = DsH a(t), s(t),λ(t), t = −ertDsH̃ a(t), s(t), µ(t), t

so that

µ̇ = DsH̃ a(t), s(t), µ(t), t

Finally,

vI(s(T )) = λ(T ) = ertµ(T )

so that

e−rtvI(s(T )) = µ(T )

Therefore, we have shown that the necessary conditions for optimality expressed in
terms of the initial value Hamiltonian are

a∗(t) maximizes H̃ a(t), s(t), µ(t), t

ṡ = DµH̃ a(t), s(t), µ(t , t) = g(a(t), s(t), t)

µ̇ = −DsH̃ a(t), s(t), µ(t), t

e−rtvI(s(T )) = µ(T )
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7.13 The Hamiltonian is

H = e−rt p(t)f(k(t))− qI(t) + λ(t) I(t)− δk(t)
The first-order conditions are

HI = −e−rtq + λ(t) = 0 (7.70)

k̇ = I(t)− δk(t)
λ̇ = −Hk = −e−rtp(t)f I(k(t)) + δλ(t) (7.71)

Equation (7.70) implies

λ(t) = e−rtq

Differentiating

λ̇ = −re−rtq
Substituting into (7.71) and using (7.70) yields

−re−rtq = −e−rtp(t)f I(k(t)) + δλ(t)

= −e−rtp(t)f I(k(t)) + δe−rtq

Cancelling the common terms and rearranging, we derive the optimality condition

p(t)f I(k(t)) = (r + δ)q

7.14

7.15 Bellman’s equation is

vt(wt) = max
ct
{u(ct) + βvt+1(wt+1)}

= max
ct
{u(ct) + βvt+1 (1 + r)(wt − ct) }

The first-order condition is

uI(ct)− β(1 + r)vIt+1 (1 + r)(wt − ct) = 0 (7.72)

But

vt+1(wt+1) = max
ct+1

{u(ct+1) + βvt+2((1 + r)(wt+1 − ct+1))} (7.73)

By the envelope theorem (theorem 6.2)

vIt+1(wt+1) = β(1 + r)vIt+2 (1 + r)(wt+1 − ct+1) (7.74)

The first-order condition for (7.73) is

uI(ct+1)− β(1 + r)vIt+2 (1 + r)(wt+1 − ct+1) = 0
Substituting in (7.74)

vIt+1(wt+1) = u
I(ct+1)

and therefore, from (7.72), the optimal policy is characterised by

uI(ct) = β(1 + r)uI(ct+1)


